Visual Speech Recognition

Andrea Burns

IVC Final Project

Why care about VSR?

- Inspired by lip-reading which humans use to understand language
 - Especially the hearing-impaired

- Many applications:
 - Video-text translation/generation
 - Robot instructions in noisy environments

Goal of the Project

- Perform visual speech recognition of the AVLetters Dataset*
 - 10 speakers speaking the English alphabet
 - Each letter repeated 3 times by one speaker
- Survey 4 several popular feature methods for VSR
- Compare classification accuracy to published results

*start with smaller multiclass case

$Consonant\, V$

Consonant M

Consonant G

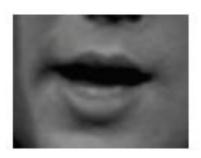
Ideas from Class + Literature

- 1) Preprocess
 - a) Denoising + image differencing + SWT + binarization + erosion + artifact removal
 - b) Median blur + histogram equalization
- 2) Obtain Features
 - a) Hu moments, Zernike moments
 - i) Yau et. al Visual Speech Recognition Using Image Moments and Multiresolution Wavelet Images in IEEE 2006
 - b) HOG descriptors
 - i) Caner Berkay Antmen, Eric Bannatyne, *Protecting the Mission: Hidden Semi-Markov Models for Visual Speech Recognition*
 - c) LBP-TOP features
 - i) Frisky et. al *Lip-Based Visual Speech Recognition System* in IEEE 2015
 - ii) Guoying Zhao and Matti Pietikaeinen, *Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions*,, IEEE 2007
- 3) Classify
 - a) 80/20 train/test split
 - b) Support Vector Machine (SVM) OVR classifier

Preprocessing Examples

Denoising + image differencing + SWT

Binarization + erosion


Artifact removal

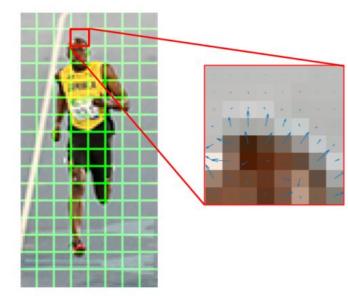
HOG LBP-TOP

(b)

(a)

Median blur

Histogram equalization


Zernike moments

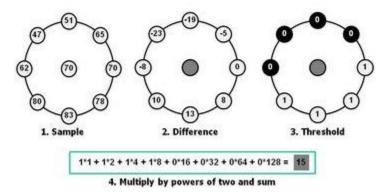
Even polynomials $Z_n^m(
ho, arphi) = R_n^m(
ho) \cos(m \,arphi)$ Odd polynomials $Z_n^{-m}(
ho, arphi) = R_n^m(
ho) \sin(m \,arphi),$ $R_n^m(
ho) = \sum_{k=0}^{n-m} \frac{(-1)^k (n-k)!}{k! \left(\frac{n+m}{2}-k\right)! \left(\frac{n-m}{2}-k\right)!} \,
ho^{n-2\,k}$

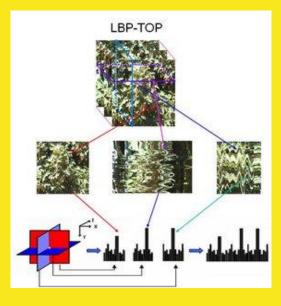
- **Orthogonal polynomials**, no redundancy in information
- Computed up to the **9th order** based off of experimental fine tuning

HOG Descriptors

Histogram Of Gradients

- Image is **split into smaller blocks**/cells
- Each cell has **direction gradients** (intensity changes)
- Removes background, highlights edges
- Histograms are **concatenated**


https://www.learnopencv.com/histogram-of-oriented-gradients/


LBP-TOP Features

Local Binary Pattern Three Orthogonal Planes

The value of the LBP code of a pixel (x_c, y_c) is given by:

 $LBP_{P,R} = \sum_{p=0}^{P-1} s(g_p - g_c) 2^p \qquad s(x) = \begin{cases} 1, \ if \ x \ge 0; \\ 0, \ otherwise. \end{cases}$

- Obtain **texture features** over image patches in XY, XT, YT planes
- Take histograms over all patches, all frames and concatenate XY-XT-YT

Frame vs. Whole Video

Feature Type	Frame by Frame	Whole Video	
Hu	\checkmark	X	
Zernike	\checkmark	X	Built for speaker dependent
HOG	\checkmark	\checkmark	Built for speaker dependent, semi-independent, independent
LBP-TOP	X	\checkmark	

Feature Type	Frame by Frame 1697/425	Whole Video 72/18
	1697/425	72/18

*Dimensionality reduction is performed using Non-negative Matrix Factorization (NMF)

Feature Type	Frame by Frame 1697/425	Whole Video 72/18
Random Guess	33.33%	33.33%

*Dimensionality reduction is performed using Non-negative Matrix Factorization (NMF)

*Dimensionality reduction is performed using Non-negative Matrix Factorization (NMF)

Feature Type	Frame by Frame 1697/425	Whole Video 72/18
Random Guess	33.33%	33.33%
Hu	37.25%	

*Dimensionality reduction is performed using Non-negative Matrix Factorization (NMF)

Feature Type	Frame by Frame 1697/425	Whole Video 72/18
Random Guess	33.33%	33.33%
Hu	37.25%	
Zernike	49.85%	

Classification Accuracy		Feature Type	Frame by Frame 1697/425	Whole Video 72/18
		Random Guess	33.33%	33.33%
*Dimensionality		Hu	37.25%	
reduction is performed using Non-negative Matrix Factorization (NMF) *# bins = 10 for consistency		Zernike	49.85%	
	\int	HOG-100	68.7%	
	concatenation (HOG-1000	89.17%	
		HOG-6750	91.52%	

Classificatior	<mark>I Accuracy</mark>	Feature Type	Frame by Frame 1697/425	Whole Video 72/18
		Random Guess	33.33%	33.33%
*Dimensionality reduction is		Hu	37.25%	
performed using		Zernike	49.85%	
Non-negative Matrix Factorization (NMF)	\int	HOG-100	68.7%	
*# bins = 10 for consistency	concatenation (HOG-1000	89.17%	
		HOG-6750	91.52%	
	flattening	HOG (10)		33.33%

Classification	<mark>Accuracy</mark>	Feature Type	Frame by Frame 1697/425	Whole Video 72/18
		Random Guess	33.33%	33.33%
*Dimensionality reduction is performed using Non-negative Matrix Factorization (NMF) *# bins = 10 for consistency		Hu	37.25%	
		Zernike	49.85%	
	/	HOG-100	68.7%	
	concatenation (HOG-1000	89.17%	
		HOG-6750	91.52%	
		HOG (10)		33.33%
	flattening	LBP-TOP (30)		66.66%

Classificatio	<mark>1 Accuracy</mark>	Feature Type	Frame by Frame 1697/425	Whole Video 72/18
		Random Guess	33.33%	33.33%
*Dimensionality reduction is		Hu	37.25%	
performed using		Zernike	49.85%	
Non-negative Matrix Factorization (NMF)	\int	HOG-100	68.7%	
*# bins = 10 for consistency	concatenation	HOG-1000	89.17%	
		HOG-6750	91.52%	
	flattening	HOG (10)		33.33%
		LBP-TOP (30)		66.66%
		LBP-TOP-100		55.55%
	concatenation	LBP-TOP-360		55.55%

Findings

- Surprisingly HOG-2650 frame by frame best performance
 - LBP-TOP second + whole video representation
- Significant compression ok with HOG frame by frame
 - not the same for video LBP-TOP
- Trade-off between more samples, lower quality features + fewer samples, higher quality features
- Look into data splits
 - Speaker dependent
 - Speaker semi-dependent
 - Speaker independent

Thank you!